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A general expression of the perfect matching number is derived for the 2 x m x n cubic lat- 
tices for the first time and is examined for infinitely large systems. The results are compared 
with those obtained from K asteleyn's expression. The agreement of one of the special solutions 
of the present expression with that obtained by Kasteleyn demonstrates the correctness of the 
present approach. 

1. I n t r o d u c t i o n  

The  concept  of  perfect match ing  has been used for explaining the chemical  stabi- 
lity of  unsa tu ra ted  hydrocarbons ,  especially for the case where a compar i son  of  
the n u m b e r  K(G)  of the Kekul6 structures, i.e. the perfect ma tch ing  number ,  is 
meaningful .  

The problems of  the adsorpt ion  of  dimer molecules on metal  surfaces and of  
the neares t -neighbor  spin interact ion in ant i ferromagnet ic  metals  have close rela- 
t ionship  with each other th rough perfect match ing  numbers .  It is also well known  
tha t  calculations of  the Ising model  and the perfect match ing  number  are closely 
related [ 1 ]. 

Kaste leyn obta ined a r igorous analytical expression for the perfect  ma tch ing  
n u m b e r  of  the m x n square lattice [1,4]. Temperley and Fisher solved the same 
p rob lem independent ly  and derived the configurat ional  g round  par t i t ion funct ion 
for the infinitely large lattice [2,3]. Hock  and McQuts t an  derived the recursion for- 
mula  for the perfect  match ing  number  of the 2 x 2 x n lattices [5]. Hosoya,  
O h k a m i  and M o t o y a m a  developed the operator  technique with which recursion 
formulas  of  the perfect  match ing  number  can easily be derived [6,7]. 
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An analytical expression for the perfect matching number of the 2 × 2 x n cubic 
lattices was then derived [8] and a general expression for that of the cylindrical 
m x n lattice was predicted [9] by the recursion formula. While these lattices are pla- 
nar, the 2 × 3 × n lattices (n >t 3) are the simplest non-planar ones among the 3- 
dimensional rectangular lattices. An analytical expression for the perfect matching 
number of the latter lattice was obtained by the same method [10]. 

In this paper an analytical expression for the perfect matching number of the 
2 x m × n rectangular lattice is proposed. A special solution of the present equation 
is shown to be equal to that obtained by Kasteleyn [1]. This guarantees that the sup- 
posed equation is correct. 

Because the result obtained here may give some clue for solving the 3-dimen- 
sional Ising model, it is desirable to derive a rigorous analytical expression for the 
perfect matching number of larger 3-dimensional lattices, such as 2 x 4 × n and 
2 × 5 x n, in order to certify the assumed equation. 

2. Perfect matching  number  of  finite lattices 

2.1. T H E  CASE O F  2 × 3 x n LATTICES 

It was proved [10] that the perfect matching number of the 2 x 3 x n lattice is 
expressed as 

5 
K(2 x 3 x n ) =  Kn = ~ aj(det Dn,j) l /4/ f (n) ,  (1) 

j = l  

where aj = constant, 
n 

f ( t / ) - - - -  I ~ ( X 2  --  4Z2 c o s 2 [ k T r / ( n  + 1)])  1/4 . (2)  

k=l  

The matrix bn,j is obtained by diagonalizing the following matrix: 

Dn,j = xQ2 ® E3 ® En + yjF2 ® Q3 ® En 

+ zE2®EaQQn, j=1,2 , . . . ,5 ,  (3) 

where 

x 2 = l ,  y j = c o n s t a n t ,  and z 2 = - l ,  

the symbol ® stands for a direct product of matrices. Matrices Q,, E, and F, are 
just what were used by Kasteleyn et al. [1,8-1 0]. 

2.2. T H E  CASE O F  2 x m × n LATTICES 

According to the expression for the perfect matching numbers of the 2 x 3 x n 
lattice the one for the 2 x m x n lattice is supposed to be 
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b' d 

K(2 x m x n) = ~ Z kb¢(det b2,m,n,b,~)e/g(m)h(n), (4) 
b=l c=l 

where e and koc are constants.  The  quanti t ies g(m) and h(n) are funct ions of  m and  
n, respectively: 

m 

g(m) -- 1-I (u2x 2 + v2y 2 + w2z2 cos2[gTr/ (m + 1)]) 8 
g=l 

m 

-- 1 - I f ( g , m +  1), (5) 
g=l 

n 

h(n) = l~ (u ' 2x  2 +v '2y  2 + w'2z2cos2[hlr/(n+ 1)]) x 
h=l 

n 

=_ I - [ f ( h , n +  1), (6) 
h=l 

where/3, 3', u, v, w, d ,  d and w ~ are constants.  
The  matr ix  D2,,.,n,b,c is obta ined by diagonalizing the ant i -symmetr ical  matr ix  

D2,rnln,b,c. The latter matr ix  shows the bonding  relat ion among  the lattice points  
defined as follows. 

Each lattice point  p in an l × rn x n rectangular  lattice is generally expressed by 
use of  the coordinates  of  a lattice point  (i,j, k) as follows: 

( i , j ,k)  ~-~ p = i +  ( j -  1 ) l +  ( k -  1)lm. (7) 

Examples  of  number ing  in the 2 x 2 x n,m x n and 2 x 3 x n lattices are shown in 
refs. [8-10]. 

The  lmn/2 dimers occupy the pairs of  sites Px and Pz,P3 and P4,P5 andp6 ,  etc., 
for the conf igura t ion  

C = Lpl;p2[p3;p4~5;p6[... [Ptmn-1;Pt,,,n[. (8) 

The  lattice points  of  a given conf igurat ion are assigned in the canonical  order:  

p~ <p2 ;p3 <p4 ; . . .  ;pt,..-~ <Plm,, ; 

Pl <P3 < . - .  ,Ptmn-1 • (9) 

In the case of  2 x l × m lattices the ant i -symmetr ical  matr ix  men t ioned  above is 

D2,m,n,b,e = xQ2 ® Ern ® En + ybF2 ® Qra ~ gn 

-~- ZtcE2 ~ Em ~ Q. .  (10) 

The set of  variables, real x, Yb and pure- imaginary  z' c, s tand for the variables 
related to the two lattice points  [8] which correspond to x, y and z directions o f  the 
lattice, respectively. 
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The determinantal element expressing the relation between the lattice points is 
as follows: 

D(i,j ,  k; i + 1,j, k) = x ,  

D ( i , j , k ; i , j +  1,k) = ( -1) 'y ,  

D ( i , j , k ; i , j , k +  1) = z, 

i = 1 , 2 ;  j = l , 2 , . . . , m ;  

a s  

k =  1 ,2 , . . . , n .  (11) 

By use of the Kasteleyn's method [1,8,9] the matrix D2,m,n,b,c c a n  be diagonalized 

D2,m,n,b,c = U21 @Um I @ Unl D2,m,n,b,eU2 @Um @ Un 

= xU21Q2U2 ® U~nlEmUm ® UnlEnUn 

+ ybU21F2U2 ® u~nlOmUm ® unlEnUn 
+ z'cU~lE2U2 ® UmlEmUm ® G1Q,  U,. 

When Af, Mg and Nh are defined by the eigenvalues Af, #g and uh, 

Af  =_xAf(f  = 1,2); ~f = 2icos[fTr/(l + 1)], 

M e - y~g(g= 1,2,...,m); Izg= 2icos[gTr/(m+ 1)], 

Nh -- z'uh(h = l , 2 , . . . , n )  ; uh = 2icos[hTr/(n + l)] , 

the determinant ofl)2,m,n,b,c can be expressed as 
m n 

det b2,m,.,b,c= I I l - I ( N ~  + x 2 -  M2g). 
g=l  h=l  

12) 

13) 

14) 

The relations A1 + A2 = 0 and A1 A2 = x 2 are used for deriving eq. (14). 
Using the above determinant, the perfect matching number of the 2 x m x n 

lattice is obtained as 

b' c' [m/2] n 

K2,m,n ~___ Z Zkb,c I I  I I  (x2 2 2 - Yb#g + z'c2~) 2e/g(m)h(n) (15) 
b=l  c=l  g=l  h=l  

Substituting each eigenvalue in eq. (13) into eq. (15), K2,m,,, is expressed as 

b' e "¢ ~ ( gTr 
g2'm'n(Yb' Zc) = Z Z kb'c H X2 + 4y2 c°s2 

b=l c=l g=l - m + 1 

where 

m'= [m/2], 

/g(m')h(n) , 

+ 4~ cos2 7-~]- 

(16) 

(17) 
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The numbers b' and c s are supposed to be finite in eq. (16). An example of the 
2 x 3 x 4 lattice is shown as follows: 

K2,3,4 (Yb, Zc) 
b'=Sc'=l [3/2] 4 / gTr 2 hTr )2E ( [ 2 ] )  

= ~= l ~_l kb,c g~=l h~=l ~X2 + 4 y2 -- COS2 ~ - ~  + 4zc2 cos ~ - - [  / g h(4) 

5 4 [  (h4_._~) ] 1/4 
= ~ ~ ( ( 2 b -  Qb)(det O , , b ) l / 4 / H  X2 -- 4Z2COS2 

b=l h=l 
where 

4 Ix2 2( hTr )]1/2[ (det/~)4,b)l/4----- I~ q- 2~_4z2co s ~ x2_4z2cos2 ( hTl ~]1/4 
h=l \4  + l J J  

and 

g([3/2]) = 1. 

(See ref. [10, eq. (40)]). 
2 form a couple of variables giving the maximum value for the When y~ and z r 

quantity expressed by the parentheses ( ) in eq. (16), the number K is expressed as 

g2,m,n(Yb, Zc) = K2,m,n 

kq,r q- Z kb'c H 1"I X2 -t- 4y 2 cos 2 + 4~ cos 2 /K2,m,n 
b,c g=Xh=l m+ 1 n+ l j  

x g(m')h(n) ' 

where 

g~lh~l( gTr n _ ~ l )  2~ g2,m,n ~ K2,m,n(Yq,Zr) ~- x2 +4Y~ cOs2 + 4 g  cOs2 
= = m + l  

(18) 

.(19) 

3. Perfect matching numbers  of  infinite lattices 

The limits ofg(m) and h(n) are respectively given by 

lim g(m) 1/m 2/3 f,12 = - -  (u2x 2 + v2y 2 cos 2 ~b + w2z 2) d~b, 
rn-, oo 71" Jo 

lira h(n) 1/" 2"), f , /2  = - -  (U/2X 2 -F "otZy 2 q- W t2Z2 COS 2 O) dO. 
n~oo 7r Jo 

If the following equations are supposed to be connected with eqs. (20) and (21), 

(20) 

(21) 
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then 

lim g(m) l/m = 1, 

lim h(n)I/"= 1, (22) 
n ---~ o o  

lim InK2,m,,(yq, Zr)l/mn= lim lnk2,m,,(yq,Zr) 1~ran, (23) 
r?l~/1 --~ Oo ?Hln --~ Oo 

because the term following ~ in eq. (18) becomes zero when m and n approach infi- 
nity. Namely,  it is supposed that the value K(yq, Zr) for an infinitely large system 
becomes k'( yq, Zr) in the same system. 

The quanti ty K2,m,, ( yq, Zr) c a n  be changed into 

K2,m,n( Yq, Zr ) = (yq)Zm, 
m' n t 

x I ~  I~{4(¢  2 + rl2cos2[hTr/(n+ 1)] 
g=l h=l 

+cos2[gTr/(m+ 1)])} 4E, n ' =  [n/2], (24) 

where 

¢ 2  _ x /4y q 

and 

,? - g . 

Using the definition 

(25) 

(26) 

u2. _ ~2 + rl2cos2[hrc/(n + 1)], (27) 

K2,m,n becomes 

K2,m,n=Y~q mn 4(u 2 q-COS2[gTr/(m-k - 1)]) . (28) 
I .h=l  g=l 

We know the following identity: 
m t 

H 4(u2 + c°s2[gTr/(m + l)]) _= {[u + (1 + u2)1/2] m+l 

g=l 

- [u - (l + u2)l/2]m+l}/2(1 + u2) 1/2 (29) 

(see ref. [1, eq. (14)]). When m approaches infinity, i.e., in an infinitely long rectan- 
gle with a finite cross section 2 x n (see fig. 1), the quanti ty (rhs of eq. (29)) 1/m 
becomes u + (1 + u z) 1/2. Then we have 

K. = nm ~2mn "~" (1 ) . (30) m--~cx~ , , = y q  Uq-  q_ U 2 1/2 
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m . ~  

Fig. 1. Infinitely long rectangular  prism with a finite cross section of the  2 x n square lattice. 

In an infinitely wide lattice like a rectangular board with width 2 (see fig. 2) we 
get 

K - -  l irn  K~/n = l i m  y~q , (31) 

and then we have 
n 

In K --- 2e In yq + lim 2e ~--~ln[u + (1 + u2)1/2]. (32) 
n-'*'oo H ~ - ~  

Equat ion (16) can be transformed into an integral form as 

4e f,~/2 
In K = 2e In Yq + - -  ln([~ 2 + r~ cos 2 q~] 1/2 

71" ./0 

+ [1 + ~2 + rl2 cos 2 ~b]l/2) d~b. (33) 

Kasteleyn treated m x n planar lattices with width zero [1] and he could calcu- 
late the integral more easily. However, it is difficult to calculate analytically the 
integral in eq. (33). Substituting e = 1/4 and x = 0, i.e. ~ = 0, eq. (33) becomes 

I n K =  l l n  Yq + 1  f'~/2 ln{r/cos ~b + (1 + r/2 cos 2 ~b)1/2}. (34) 
1r j0 

Equat ion (34) is the same as eq. (17) of ref. [1]. Namely,  our solution (33) contains 
the one by Kasteleyn as a special case. In the case of  yq = 1 = zr, the value K 2 
becomes as follows: 

K2(yq = 1,r 1 = 1) = 1.79162. 

n = l  

Fig. 2. Infinitely long square latt ice with width 2. 
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The  a b o v e  value  is o f  course  the same as the one ob ta ined  by  Kas te leyn .  
E q u a t i o n  (33) can  be wr i t ten  as 

I n K  l fo'~/21n([~4+z2cos2~]l/2 [y x2 ]1 /2 )  = + 2q + _ ~ _ + d c o s 2 ~ b  d~b. (35) 

I t  is to be n o t e d  tha t  there  is a fac tor  1 /4  in f ron t  o f  x 2 because  the wid th  o f  the 
x-d i rec t ion  is no t  zero in the lattice 2 x m x n. 

The  genera l iza t ion  o f  eq. (35) to l x m x n latt ices will be  the next  p r o b l e m  to 
be  solved.  
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