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A general expression of the perfect matching number is derived for the 2 x m x n cubic lat-
tices for the first time and is examined for infinitely large systems. The results are compared
with those obtained from Kasteleyn’s expression. The agreement of one of the special solutions
of the present expression with that obtained by Kasteleyn demonstrates the correctness of the
present approach.

1.Introduction

The concept of perfect matching has been used for explaining the chemical stabi-
lity of unsaturated hydrocarbons, especially for the case where a comparison of
the number K(G) of the Kekulé structures, i.e. the perfect matching number, is
meaningful.

The problems of the adsorption of dimer molecules on metal surfaces and of
the nearest-neighbor spin interaction in antiferromagnetic metals have close rela-
tionship with each other through perfect matching numbers. It is also well known
that calculations of the Ising model and the perfect matching number are closely
related [1].

Kasteleyn obtained a rigorous analytical expression for the perfect matching
number of the m x n square lattice [1,4]. Temperley and Fisher solved the same
problem independently and derived the configurational ground partition function
for the infinitely large lattice [2,3]. Hock and McQutstan derived the recursion for-
mula for the perfect matching number of the 2 x 2 x n lattices [5]. Hosoya,
Ohkami and Motoyama developed the operator technique with which recursion
formulas of the perfect matching number can easily be derived [6,7].
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An analytical expression for the perfect matching number of the 2 x 2 x n cubic
lattices was then derived [8] and a general expression for that of the cylindrical
m x nlattice was predicted [9] by the recursion formula. While these lattices are pla-
nar, the 2 x 3 x n lattices (n>3) are the simplest non-planar ones among the 3-
dimensional rectangular lattices. An analytical expression for the perfect matching
number of the latter lattice was obtained by the same method [10].

In this paper an analytical expression for the perfect matching number of the
2 x m x nrectangular lattice is proposed. A special solution of the present equation
is shown to be equal to that obtained by Kasteleyn [1]. This guarantees that the sup-
posed equation is correct.

Because the result obtained here may give some clue for solving the 3-dimen-
sional Ising model, it is desirable to derive a rigorous analytical expression for the
perfect matching number of larger 3-dimensional lattices, such as 2 x 4 x n and
2 x 5 x n,1in order to certify the assumed equation.

2. Perfect matching number of finite lattices

2.1. THE CASE OF 2 x 3 x n LATTICES

It was proved [10] that the perfect matching number of the 2 x 3 x n lattice is
expressed as

KQ2x3xn) =K,= iaj(det D )V /f(n), (1)

j=1
where a; = constant,

f(n) = ﬁ(xz — 422 cos?[kr/(n + 1)])/*. (2)

k=1
The matrix E,,, j1s obtained by diagonalizing the following matrix:
Dp;=x@E;QE,+y;F2® 03 ® E,y
+zE,FE3 0, j=1,2,...,5, (3)
where
=1, y;j = constant, and =1,

the symbol ® stands for a direct product of matrices. Matrices Q,, E, and F, are
just what were used by Kasteleyn et al. [1,8-10].

2.2. THE CASE OF 2 x m x n LATTICES

According to the expression for the perfect matching numbers of the 2 x 3 x n
lattice the one for the 2 x m x nlattice is supposed to be
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¥y
K2 xmxn)=> " ky(det Domnpc)/g(m)h(n), (4)

b=1 =1

where ¢ and k. are constants. The quantities g(m) and h(n) are functions of m and
n, respectively:

(2x* + v*)? + w2 cos?[gn/(m + 1)))°

s

g(m) =
1

g

s

flgm+1), (5)
1

g
]

h(n) = ﬁ(u’zxz + 02y + w22 cos? [/ (n + 1)])?
h=1

Eﬁf(h,n+l), (6)
h=1 :

where 3,7, u, v, w,u/, v/ and w’ are constants.

The matrix Dz,,,,,,,,b,c is obtained by diagonalizing the anti-symmetrical matrix
D3 mnpe- The latter matrix shows the bonding relation among the lattice points
defined as follows.

Each lattice point p in an / x m x n rectangular lattice is generally expressed by
use of the coordinates of a lattice point (7, j, k) as follows:

(i,jk) o p=i+ (- 1Di+(k—-1)m. (7

Examples of numbering in the 2 x 2 x n,m X n and 2 x 3 x n lattices are shown in
refs. [8-10].

The Imn/2 dimers occupy the pairs of sites p; and ps, p3 and pa, ps and p, etc.,
for the configuration

C = |p1;p2|p3; palpsi é| - - - [Pimn—1; Pirnn - (8)
The lattice points of a given configuration are assigned in the canonical order:
Pr<p2;P3<p4;-..;Plmn—1 <Plmn;
P1<p3<...,Dimn-1- 9)
Inthe case of 2 x [ x mlattices the anti-symmetrical matrix mentioned above is
Dymppe=x02 @ Epy @ Ep + yp 2 @ O ® Ey
+ ZE @ En® Q. (10)

The set of variables, real x,y, and pure-imaginary z,, stand for the variables
related to the two lattice points [8] which correspond to x, y and z directions of the
lattice, respectively.
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The determinantal element expressing the relation between the lattice points is
as follows:

D(i,j, k;i+1,j,k) =

D(i,j, k;i,j +1,k) = (1)

D(i,j, k;i,j,k+1) =

i=1,2; ]—1,2 m; k=12,...,n. (11)

By use of the Kasteleyn’s method [1,8,9] the matrix Dj , 5 5 can be diagonalized
as

Damppe=Us' @ Up' @ Uy Dopnnp Uz @ Up ® Uy
=xU;'0:U, ® U;'E, U, ® U 'E, U,
+ U ' FUs ® Uy, QnUn ® Uy ' E, Uy
+ 22U By U, @ U EnUn © Uy ' Qu U (12)
When Ay, M, and Nj, are defined by the eigenvalues A, p, and v,
Ar=xX(f=1,2); A =2icos[frn/(l+1)],
My, =yu,(g=12,...,m); pg=2icosgn/(m+1)],
Ny=Zu(h=1,2,...,n); wvy=2icoslhr/(n+1)], (13)
the determinant of D » 5 - can be expressed as
det Dy pmppc = ﬁ ﬁ(N,f +x - M), (14)
g=1h=1

The relations A; + A; = 0and A; A; = x® are used for deriving eq. (14).
Using the above determinant, the perfect matching number of the 2 x m x n
lattice is obtained as

m/2 n

Ko = szbcnnxz VaH2 + 2212) [g(m)h(n) (15)

=1 c¢=1 g=1 h=1

Substituting each eigenvalue ineq. (13) into eq. (15), K3 1s expressed as

2
K2 mn( )’b,zc)—ZZkbcHH<x2+4yb cos? +4zzcos ]Zrl)
1 e=1 g=1 h=1
/g(m')h(n), (16)

where
= [m/2],
=-22>0. (17)
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The numbers &' and ¢’ are supposed to be finite in eq. (16). An example of the
2 x 3 x 4lattice is shown as follows:

K>34(vs, 2c)
=1 [3/2 4

_ZZkbcHH(xz+4yb—cos 3+1-{-4zc2cos 411) /g ({3])}1(4)

b=1 c=1 g=1 h=1
)} 1/4
where

4 1/2 1/4
(det Dyy)'* = H[xz + 2~ dteos (41:‘:51)] [xz e cos! (zthTWfﬂ

h=1

vV —ApAs(Qs — Ob)(det Dy 17)1/4/1__[[3‘2 47> cos’

5
b=1

and
g((3/2]) =

(See ref. [10, eq. (40)]).
When 3?2 and z? form a couple of variables giving the maximum value for the
quantity expressed by the parentheses ( ) in eq. (16), the number X is expressed as

KZmn(yb,Zc) - I—{2mn

n hn 2e _
{qu+ZkbCHH<x2 +4ybcos +4z§coszn+ l) /Kz,m,,,}
b, g=1 h=1
X |
g(m')h(n)
(18)
where
_ _ m n g h 2e
Komn = Komn(yq:2) = gl;IlLII(xz + 4yq cos? —— — 4 422 cos? —y 1) .(19)
3. Perfect matching numbers of infinite lattices
The limits of g(m) and h(n) are respectively given by
. Zﬂ w/2
lim g(m)"/m =22 / (122 + )2 cos?  + wi22) dob, (20)
m—*00 T 0
1/n 2y 2 n 2.2 n 2
lim A(n)'/" == (u?x* + vy + w2 cos? 0) df . (21)
n—>00 m Jo

If the following equations are supposed to be connected with egs. (20) and (21),
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lim g(m)l/’" =1,

m-* 00
i/n _
nangoh(n) =1, (22)
then
lim In Kz,,,,,(yq,z,)l/m": lim In Kz,,,,,(yq,z,)l/'"", (23)
mn_’ m"_"m

because the term following > in eq. (18) becomes zero when m and n approach infi-
nity. Namely, it is supposed that the value K(yq, z;) for an infinitely large system
becomes K( yq, z;) in the same system.

The quantity I"<2‘,,,,,,( ¥q Zr) can be changed into

kz,m,n()’q’ Zr) = (yS)Zmn

m

X H II{4(§2 +n*cos?[hm/(n + 1)]
g=1 h=I
+cos?[gn/(m+ D))}*, ' =[n/2], (24)
where
& = x* /4y, (25)
and
=2Z/y:. (26)
Using the definition
w? = € 4+ pPeos?fhn/(n+1)], (27)
K5 . n becomes
_.yzf’""{HH4u2+cos g7r/(m+1)])} (28)
1g=1
We know the following identity:
[T402 + costlen/(m+ 1)) = {{u+ (1 +12)™
g=1

= [ = (14 Py 2(1 4+ 02)' 2 (29)

(seeref. [1, eq. (14)]). When m approaches infinity, i.e., in an infinitely long rectan-
gle with a finite cross section 2 x n (see fig. 1), the quantity (rhs of eq. (29)) /™
becomes u + (1 + 1?)'/*. Then we have

' 4e
K, = lim KZ{nn = yq (H[u +(1+ uZ)I/Z]) ) (30)
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m=oo

Fig. 1. Infinitely long rectangular prism with a finite cross section of the 2 x nsquare lattice.

In an infinitely wide lattice like a rectangular board with width 2 (see fig. 2) we
get

o 4e/n
= lim K/n = hm 1y (H (u+ l+u2)1/2]) , (31)
and then we have '
InK=2clnyg+ lim —Zlnu+ (1+12)7. (32)

Equation (16) can be transformed into an integral form as
4 /2
InK =2¢1ny, +—7§/ In([€2 + n? cos? ¢]'/*
0

+ 14+ & +nPcos?¢]'?) dg. (33)

Kasteleyn treated m x n planar lattices with width zero [1] and he could calcu-
late the integral more easily. However, it is difficult to calculate analytically the
integralineq. (33). Substitutinge = 1/4and x = 0,1.e. £ = 0, eq. (33) becomes

1 /2
InK =1iln yq-i—;/ In{ncos ¢ + (1 + n cos? ¢)'/*} . (34)
0

Equation (34) is the same as eq. (17) of ref. [1]. Namely, our solution (33) contains
the one by Kasteleyn as a special case. In the case of yq = 1 = z,, the value K?
becomes as follows:

K*(yq=1,n=1) =1.79162.

NN

Fig. 2. Infinitely long square lattice with width 2.
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The above value is of course the same as the one obtained by Kasteleyn.
Equation (33) can be written as

2 172 172
an:l/O ln([§+zfcosz¢} +[yé+§+zfcosz¢jl )d¢. (35)

s

It is to be noted that there is a factor 1/4 in front of x? because the width of the
x-directionisnot zerointhelattice 2 x m x n.

The generalization of eq. (35) to / x m x n lattices will be the next problem to
be solved.
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